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Abstract
We have already shown that binary Coulomb compounds in disordered states
are stabilized against phase separation in a minor ion rich region as charge
asymmetry is enhanced; a stable phase appears approximately beyond the
charge ratio RZ = 6. In this paper, the mechanical properties of the stable
compounds are elucidated through extensive calculations of the Coulomb
energy increments due to virtual deformations. The compounds turn out to be
much more isotropic than the mixed pure crystals in the linear response regime.
And their effective elastic constants obtained by averaging over directions
are well expressible in terms of those of the pure crystals. The compounds,
however, show fragile behaviour at the degree of deformation where the pure
crystal still retains its elasticity.

PACS numbers: 52.27.Gr, 97.60.Lf

1. Introduction

A binary ionic mixture (BIM) composed of two species of ions with different charges Z1e

and Z2e is a prototype model for the interior of white dwarfs and the outer crust of neutron
stars [1, 2]. The ions in the model are embedded in a uniform and rigid charge-compensating
background with charge density ρe; throughout the present paper we assume the background
has a unit volume. The typical central density of white dwarfs, consisting mainly of C and O,
is around 106 g cm−3 and the Fe crust of neutron stars is assumed to have a density ranging
from 104 to 107 g cm−3. Under such high density conditions ions are completely ionized and
the liberated electrons form a degenerate electron gas with a role of the ideal background;
ions thereby interact with each other through bare Coulomb potentials.

Crystallization is predicted to happen upon cooling of dense stars. A one-component
plasma crystallizes into a body-centred cubic (bcc) lattice and the transition point has been
precisely determined by Monte Carlo simulations [3, 4]. In the BIM the phenomenon is much
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more complicated emerging as an alloying problem. To simplify the situation, here we limit
our attention to the ground state properties of BIMs. The ground state is characterized by the
following two parameters. The one is a charge ratio RZ defined as RZ ≡ Z2/Z1; one can
set RZ > 1 without losing any generality. The remaining is a number fraction x given by
x ≡ N2/N , where N ≡ N1 + N2 is the total number of ions and Ni is the number of ions of
species i.

Dyson [5] calculated the Madelung energies of BIMs in ordered solid states with specific
compositions as a function of RZ to find that some of them form stable compounds against
phase separation. In particular, he discovered that a compound with the NaCl lattice structure
was unusually stable around RZ = 13; He+2–Fe+26 BIM is a relevant system. He thereby
pointed out a possibility that He ions may survive from nuclear burning in the Fe crust of
neutron stars. Witten [6] developed this idea by including the zero-point energy and all first-
order electronic screening effects. Foldy [7] elaborated on electrostatic stability of binary
compounds with various kinds of lattice structures in equal concentration.

Ogata et al [8] extensively calculated the Madelung energies of BIMs in solid states with
substitutional disorder for a range of RZ = 4/3–4 to construct phase diagrams for various
BIMs and ternary ionic mixtures at finite temperatures. The range of charge ratio pertains
to possible plasmas realized in the interior of white dwarfs. The present authors [9] then
expanded the accessible range of RZ up to 13 to encompass the outer crust of neutron stars,
and calculated the Madelung energies for BIM solids with interstitial disorder as well as
substitutional disorder. Their remarkable finding is that the compounds in disordered states
are also stabilized with the critical composition of xc ≈ 0.2 as the charge ratio is increased
across RZ ≈ 6.

In this paper, we extend our previous work to elucidate the mechanical properties of
stable BIMs in disordered solid states. These are essential physical inputs to analyse nonradial
oscillations of neutron stars [10] and variable white dwarfs [11, 12]. The first-principle
calculations of shear moduli for one-component Coulomb solids have been carried out at finite
temperatures [13]. The phonon dispersion curves of the He–Fe compound of Dyson were
calculated [6]; no appreciable mixing effects on its phonons were observed as compared to
those of the corresponding pure Fe solid.

In passing we note that we are now much free to explore a wide variety of BIM solids,
thanks to the recent success of crystallization of multicomponent non-neutral ion plasmas in
a Penning trap; highly charged Xe ions were indirectly cooled to form a crystal through laser
cooling of coexisting Be+ ions [14].

2. Stability of disordered Coulomb compounds

We have considered BIMs with two representative disordered structures, that is, substitutional-
type and interstitial-type alloys in the previous paper [9]. In order to construct such BIMs,
we first prepared a crystalline system in which ions with larger charge were put in the bcc
structure. We then randomly picked up some of the ions which were replaced by ions with
smaller charge. Or we randomly inserted minor ions into interstitial sites of the bcc lattice
of major ions. The former provides with a substitutional-type alloy and the latter, with an
interstitial-type alloy. Finally, we carried out structural relaxations of the disordered BIMs, so
prepared using the conjugate gradient method [15]. The stability of the Coulomb compounds
was determined through comparison of their Madelung energies with those of the mixed pure
crystals. This is one of the global minimization problems with many degrees of freedom so
that it is important to make a good guess for the solution. In the calculations we used cubic
cells containing a total of around 1000 ions. The minimization procedure was iterated until
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Figure 1. Stability diagram of disordered BIM solids in the RZ–x plane. The solid triangles show
the points where the computations were carried out only for BIMs with substitutional disorder; the
crosses show the points only for BIMs with interstitial disorder; the solid circles refer to both types
of disordered BIMs. The compounds are absolutely stable against phase separation in the dark
region, while they are unstable outside. The critical point is located around RZ = 6 and x = 0.2.

the relative variance of the energy reached 10−6. The number of iterations varied from tens to
hundreds depending on the initial arrangements.

Figure 1 illustrates a stability diagram of the disordered compounds along with
computational points for the Madelung energies and the elastic constants. We especially
note that a crossover from the substitutional disorder to the interstitial disorder as regards their
relative stability takes place as RZ is increased around RZ = 3, although the Madelung energy
of the stable compounds is virtually independent of which type of disorders is adopted at the
onset of the structural relaxation in RZ > 2.

The excess Madelung energies due to mixing for ordered and disordered AB3-type
compounds are plotted as a function of the charge ratio in figure 2. The disordered compound
has a lower energy than the ordered compounds over the whole range of RZ studied here.
In contrast, as seen in figure 4 of [9] the disordered compound is not energetically favoured
at x = 0.5; Dyson’s compound with the NaCl structure is significantly more stable than
the disordered one. But we assume that the formation of such a compound with a perfect
crystalline structure may be difficult to be realized in the actual situations including rapid
cooling of neutron stars. This assumption is supported by the computational evidence that
the structural relaxation starting from totally different disorder arrangements leads to final
states with similar energies. The construction of a phase diagram for the Coulomb compounds
within the scope of disordered states may thus sound plausible from the dynamical point of
view.

3. Elastic properties of disordered Coulomb compounds

The energy change of a cubic crystal with a unit volume due to arbitrary deformation is
expressed [16] in the linear response as

δE = 1
2C11

(
u2

xx + u2
yy + u2

zz

)
+ C12(uxxuyy + uyyuzz + uzzuxx) + 2C44

(
u2

xy + u2
yz + u2

zx

)
(1)
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Figure 2. Excess Madelung energies due to mixing for various AB3-type Coulomb compounds as
a function of the charge ratio RZ . The dotted, solid and dashed lines show the results for ordered
compounds with the crystalline structures (a), (b) and (c) in figure 1 of [9], respectively. The solid
and open circles show the results for the disordered compounds in interstitial and substitutional
disorders, respectively. This is an amended figure of figure 2 in [9] where the results for the ordered
compounds were erroneously multiplied by a factor of 2. Note that the energies are normalized
here in terms of the averaged charge Z̄ and averaged ion-sphere radius ā in the same way as in the
previous paper.

where uij is the strain tensor and Cαβ is the elastic modulus tensor with α, β taking values
from 1 to 6 in correspondence with xx, yy, zz, xy, yz, zx. Since the compounds in the rigid
background are deformed with its total volume fixed (i.e.,

∑
i uii = 0), we can rewrite (1) as

δE = B
(
u2

xx + u2
yy + u2

zz

)
+ 2C

(
u2

xy + u2
yz + u2

zx

)
(2)

where 1
2 (C11 − C12) and C44 have been replaced with B and C. If the cubic symmetry is

destroyed, elements for each direction of deformation must be distinguished:

B11 = (2C11 − C12 − C31)/4

B22 = (2C22 − C23 − C12)/4 (3)

B33 = (2C33 − C31 − C23)/4.

We define a directionally averaged value for B out of the individual elements B11, B22 and
B33: B = (B11 + B22 + B33)/3. The same averaging procedure is followed for C. The elastic
constants B11 and C44 for a pure Coulomb solid were obtained by Fuchs [17]. The results
are 0.0245 and 0.1827 in units of N(Ze)2/a with a = (−3Ze/4πρe)

1/3 where N ions of
charge Ze are assumed to form a uniform bcc lattice in a neutralizing background with charge
density ρe.

3.1. Elastic constants for mixed pure crystals

To extract intrinsic mixing effects on the elastic properties of the compounds, we define the
elastic constants based on the linear mixing law ηlm (η denotes B or C) as

ηlm = ηbcc

{
(1 − x) + xR

5/3
Z

}
(4)

where ηbcc is the corresponding constant of the pure bcc crystal of ionic species 1. The
linear mixing values are equivalent to those of mixed pure crystals without interfacial energies
between the two phases. The results at the computational points in figure 1 are listed in
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Table 1. The elastic constants Blm and Clm of BIM solids based on the linear mixing law in units
of N(Z1e)

2/a1, where a1 = (−3Z1e/4πρe)
1/3.

x

RZ 0.1 0.25 0.5 0.67 0.75 0.8 0.9

Blm

4/3 0.0260 0.0282 0.0320 0.0345 0.0358 0.0365 0.0380
2 0.0298 0.0378 0.0511 0.0600 0.0644 0.0671 0.0724
3 0.0373 0.0565 0.0886 0.110 0.120 0.127 0.140
5 0.0578 0.107 0.191 0.246 0.274 0.291 0.324
6 0.0705 0.139 0.254 0.331 0.370 0.393 0.439
8 0.100 0.214 0.404 0.530 0.594 0.632 0.708
10 0.135 0.302 0.580 0.766 0.859 0.914 1.02
13 0.198 0.458 0.892 1.18 1.32 1.41 1.58

Clm

4/3 0.193 0.210 0.238 0.257 0.267 0.272 0.283
2 0.222 0.282 0.381 0.447 0.480 0.500 0.540
3 0.278 0.422 0.661 0.820 0.900 0.948 1.04
5 0.431 0.804 1.42 1.84 2.04 2.17 2.42
6 0.526 1.04 1.90 2.47 2.76 2.93 3.27
8 0.749 1.59 3.01 3.95 4.43 4.71 5.28
10 1.01 2.25 4.33 5.71 6.40 6.82 7.65
13 1.47 3.41 6.65 8.81 9.89 10.5 11.8

table 1, where the elastic constants are normalized in terms of the physical parameters for ions
of species 1. The mixing effects are discussed in reference to these results.

3.2. Elastic constants for disordered compounds

To obtain the elastic constants, we adopt the same deformations Dα (α = 1–6) as in [13]:

D1 : uxx = ε +
3

4
ε2 uyy = uzz = −ε

2

D2 : uyy = ε +
3

4
ε2 uzz = uxx = −ε

2

D3 : uzz = ε +
3

4
ε2 uxx = uyy = −ε

2

D4 : uxy = uyx = ε

2
uzz = ε2

4

D5 : uyz = uzy = ε

2
uxx = ε2

4

D6 : uzx = uxz = ε

2
uyy = ε2

4
where ε is a perturbative parameter characterizing the degree of deformations. It is sufficient
to keep the total volume of a system invariant up to order ε2 in the linear response calculation.
Substitution of each of the above deformations in equation (2) shows that the elastic constants
can be calculated by taking the second derivative of the Madelung energy with respect to ε. The
deformations Dα (α = 1–3) represent uniaxial stretching of a cubic lattice along the principal
axes and selectively yield the elastic constants Bαα . The remaining sets of deformations
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Table 2. The elastic constants B and C in units of N(Z1e)
2/a1 for BIM solids in substitutional

disorder. The numbers in parentheses denote possible errors in the last digits.

x

RZ 0.1 0.25 0.5 0.75 0.9

B

4/3 0.0303 (0) 0.0379 (1) 0.0465 (3) 0.0471 (2) 0.0438 (1)
2 0.0777 (21) 0.166 (5) 0.238 (4) 0.228 (8) 0.125 (0)
3 0.174 (2) 0.271 (1) 0.422 (5) 0.567 (8) 0.422 (5)

C

4/3 0.191 (0) 0.204 (0) 0.229 (0) 0.259 (0) 0.280 (0)
2 0.190 (1) 0.195 (3) 0.255 (3) 0.377 (5) 0.504 (0)
3 0.185 (1) 0.277 (1) 0.436 (3) 0.602 (6) 0.852 (3)

Table 3. Same as table 2 but for BIM solids in interstitial disorder.

x

RZ 0.1 0.25 0.5 0.67 0.8 0.9

B

3 0.182 (1) 0.273 (1) 0.427 (2) 0.570 (13) 0.564 (3) 0.383 (5)
5 0.250 (1) 0.478 (1) 0.804 (5) 0.936 (7) 0.918 (5) 0.787 (2)
6 0.338 (1) 0.648 (1) 1.09 (1) 1.27 (1) 1.24 (0) 1.06 (0)
8 0.483 (1) 0.979 (6) 1.57 (0) 1.89 (1) 1.82 (3) 1.59 (1)

10 0.605 (2) 1.34 (1) 2.06 (3) 2.57 (6) 2.50 (3) 2.25 (1)
13 0.953 (1) 1.95 (1) 2.81 (1) 3.62 (4) 3.58 (2) 3.46 (1)

C

3 0.180 (1) 0.276 (1) 0.434 (1) 0.618 (9) 0.894 (2) 1.27 (0)
5 0.253 (1) 0.515 (1) 0.990 (4) 1.71 (1) 2.59 (0) 3.62 (0)
6 0.342 (1) 0.698 (1) 1.34 (0) 2.32 (1) 3.52 (0) 4.91 (0)
8 0.484 (1) 1.08 (0) 2.24 (0) 3.88 (1) 6.00 (2) 8.51 (1)

10 0.687 (1) 1.56 (0) 3.34 (2) 5.78 (4) 9.00 (2) 12.9 (0)
13 0.952 (0) 2.42 (1) 5.38 (1) 9.27 (3) 14.5 (0) 20.9 (0)

Dα (α = 4–6) represent skewing of the lattice in the principal planes leading to Cαα . We refer
the readers to [13] for the computational details including handling of the long-range nature
of Coulomb potentials through the Ewald summation.

The results for the averaged elastic constants B and C so obtained for BIM solids with
substitutional and interstitial disorders are listed in tables 2 and 3, respectively. The tabulation
takes into account the crossover in the relative stability between the two characteristic disorders
around RZ = 3. We find that B is always much larger than Blm. That is, the compounds
show a much tougher response against the uniaxial deformation than the mixed pure crystals.
In contrast, the compounds in the stable region are softer than the mixed pure crystals for
the skew deformation. Combining these results we thus see that the anisotropy in the stable
compounds is significantly reduced by the ionic mixing. The difference between B and C
provides with a measure of mechanical anisotropy of a cubic crystal [16].

3.3. Effective shear modulus

The elastic properties of crystalline solids are generally anisotropic. But it is sometimes useful
for practical purposes to introduce a directionally averaged value for the elastic constants.
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Figure 3. Effective shear modulus µeff at x = 0.25 as a function of RZ , measured by N(Z1e)
2/a1.

The crosses are the results of disordered BIM solids. The results of BIMs with substitutional
disorder are used for RZ � 3, and those of BIMs with interstitial disorder are used for RZ � 5.
The open circles show the values of the linear mixing given by equation (3).

The effective shear modulus µeff was thereby defined [13] as

µeff = (6B + 9C)/15. (5)

For an isotropic body B,C and hence µeff take the same value. The results in table 3 show that
the anisotropy is significantly depressed by mixing for the compounds in the stable region.
The results for µeff actually calculated for the BIMs and those based on the linear mixing
law are readily derived from tables 1, 2 and 3. We then see that those two results are almost
indistinguishable, that is, there are no appreciable mixing effects on the averaged elastic
properties of the stable compounds. This fact is demonstrated in figure 3 where µeff are
plotted as a function of RZ at x = 0.25.

3.4. Nonlinear effects of deformation

To examine to what extent nonlinear effects are manifested on the mechanical properties of the
compounds, we have directly calculated the Madelung energy for the compounds with varied
deformations and compared the results with those of the linear response calculation given in
the previous subsection. First we assess the nonlinear mechanical nature of a pure Coulomb
lattice in the bcc structure. Figure 4 plots the variation of the Madelung energy of the system
with respect to the degree of the D4 deformation along with a parabolic curve derived from
the Fuchs value for C. The elasticity is retained even at a level of 1% deformation. This will
serve as a reference for the present discussion.

As demonstrated in figure 5(a), the compounds in the stable region near the critical point
tend to easily lose the elasticity against the skew deformation; the compounds are fragile. This
indicates that there exist a number of neighbouring states in the vicinity of the equilibrium state
with similar Madelung energies. In contrast, figure 5(b) shows that the metastable compounds
consisting dominantly of major ions are highly elastic over a wide range of deformation.
Doping of minor ions into the lattice of major ions does not lead to softening of the elasticity.
The same conclusions are drawn for the compounds with larger RZ from the comparison in
figure 6.
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Figure 4. The Madelung energy in units of N(Ze)2/a of the pure bcc crystal as a function of the
displacement ε in the deformation D4. The parabolic curve is the linear response result with the
Fuchs value for C.
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Figure 5. The Madelung energies in units of N(Z1e)
2/a1 of BIM solids with interstitial disorder

for varied degrees of the D4 deformation. Panel (a) shows the results for RZ = 8 at x = 0.25;
panel (b) shows the results for RZ = 8 at x = 0.9. The solid lines and dashed lines show
the parabolic curves derived from C and Clm, respectively. The solid circles show the values
obtained by the direct calculations for deformed compounds. The errors were estimated out of
three independent calculations.

Witten [6] calculated the phonon dispersions of the Fe bcc lattice and the He–Fe compound
of Dyson with or without account for electron screening at equal charge density. He concluded
that the elastic properties of the compound differ little from those of the pure lattice since the
shear-wave curves are of roughly the same slope on the figures of the phonon dispersions. But
he pointed out a possibility that nonlinear properties such as brittleness might be significantly
different in compounds. To address his question we have also applied the present mechanical
analyses to the He–Fe compound. The two elastic constants were obtained as B = 3.65
and C = 4.84 in the reduced units. The averaged value µeff over propagating directions of
phonons is almost identical to that of linear mixing where the pure Fe lattice gives a dominant
contribution. This coincides with the pictorial observation due to him. Figure 7 shows that the
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Figure 6. Same as figure 5, but for RZ = 13.
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Figure 7. Same as figure 5, but for the He–Fe compound with the NaCl lattice structure
(RZ = 13, x = 0.5).

ordered compound is elastic as strong as the pure crystal. This gives an answer to the question
posed by him.

4. Concluding remarks

We have carried out extensive calculations on the elastic properties of the disordered BIM
solids. The effective shear modulus of the compounds in their stable region is virtually
indistinguishable from that of the mixed pure crystals. The mixing effects, however, give
rise to the nonlinear mechanical properties of the stable compounds such as fragility. As one
of the possible extensions of the present study we are directed towards ternary compounds.
Although standard white dwarfs evolved from main-sequence stars such as the sun consist
mainly of C and O, it is assumed that they may contain heavier trace elements such as Ne and
Fe [18]. Also it is predicted that more massive white dwarfs may form O–Ne–Mg cores [19].
Another way to proceed is towards trapped non-neutral plasmas of multi-ionic species [14].
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One may be able to take advantage of the unusual stability of disordered Coulomb compounds
to work out an efficient method of sympathetic cooling for highly charged ions.
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